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ABSTRACT

The performance of (M, S)-optimality criterion on Regular two-level fractional
factorial designs (FFD’s) is studied. The criterion has good estimation capacity
and easy to compute. In the past, researchers have used (M, S)-optimality
criterion on Regular two-level fractional factorial designs up to two factor
interactions (2fi’s). This study is the extension of previous work and (M, S)-
optimality criterion is used on Regular two-level FFD’s to two factor interactions
(2fi’s) as well as three factor interactions (3fi’s). Models for three factor

interactions are used to determine maximum trace Cd and minimum trace 2
dC

for the best designs. New formulae for two factor interactions and three factors
interactions are developed and used. Two components of the (M, S) criterion,

i.e., trace Cd and trace 2
dC are derived as explicit functions of the numbers of

three- and four-letter words. Generally, (M, S)-optimal designs are not Minimum
Aberration MA designs but all MA designs up to 64 runs are (M, S)-optimal.
Although main effects, 2fi’s and 3fi’s are focused in this study, but the (M, S)
criterion is to be used when 3fis or more than three factors are available.

Keywords: Alias sets, fractional factorial designs, minimum aberration, (M, S)-
Optimality, regular fractional factorial design.

INTRODUCTION

According to FFDs it can be mainly divided into two portions regular designs and
non-regular designs. Those designs which are made through different factors
they are called regular designs. Combined  belongings are also orthogonal or
fully aliased while there run size is also a power of 2 or of s, generally, as those
fractions of 2n or sn full factorial designs; while a multiple of 4 is the basic rule for
the construction of non-regular designs, e.g. 4, 8, 12. In regular designs, the
gaps between possible run size is more as the power increases. So the regular
designs are not run size economical, particularly when the runs are costly to do.
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The most commonly used criterion which is called MA criterion is used for
choosing a good regular design (Fries and Hunter, 1980).

When we assigned additional factors to Full Fractional Factorial Designs, they
are called higher order interactions of a full factorial design. In this way, the
researchers have an ability to add more factors by sacrificing to evaluate higher
order relations. The guess of the major outcome is complete to be
interchangeable from the estimate of the interaction column that were to which it
was provided in which reason which was the two effects are fully aliased. In this
way a particular run size and a fixed number of factors, Fractional Factorial
Designs can be used if possible. However, the selection of set from good designs
are most important. The concept of resolution criterion to rank the many possible
FFD’s is introduced by Box and Hunter, while Fries and Hunter (1980) reported
that MA criterion is  a refinement of Box and Hunter’s criterion.

According to Shah (1960) who worked on this method that will hereafter be called
S-optimality. In S-optimality, minimize i i

2 where λi are nonzero eigenvalues (i

=1, 2…) if the trace of information matrices of the competing designs are
identical. The corresponding optimum design will be referred to as S-optimum.
The (M, S)-optimality criterion was launched by Eccleston and Hedayat (1974) as
a generalization of the S-optimality criterion of Shah (1960). It was a two-stage
optimization process as follows. Let M denote the subclass of designs N  D
such that the C-matrices have maximal trace, denoted by trace Cd among the
designs in D. A design N  D is said to be (M, S)-optimal if N  M and if the
square of its Cd-information matix has minimum trace among the designs in M.
To use the (M, S)-optimality criterion, first form a subclass of designs whose
information matrices have maximum trace, then select designs from that
subclass in this way the square of the information matrix has minimum trace. The
resulting design is called the (M, S)-optimum design (Eccleston and Hedayat,
1974).

The (M, S)-optimality criterion is commonly used and supported by many authors
these criteria are identified as the alphabetical optimality criteria. A major
advancement in this regard was the equivalence theorem for D-optimum and G-
optimum designs proved in Kiefer and Wolfowitz (1960). Optimality theory was
the main subject of several textbooks in the early 70’s. The major contributions
can be attributed to Fedorov (1972).

METHODOLOGY

According to Eccleston and Hedayat (1974) who worked on (M, S) procedure
which is available in optimal design literature. Nowadays, in agricultural and
industrial experiments, there are many situations where three-factor interactions
3fi’s are also important. So, this study is an extension of Qu et al. (2008) focused
on three-factor interactions. For this purpose we  extended formula of two factor
interaction of  two-level design to three factor interactions of design d with m runs
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of n factors for  n
2 two factor interactions and  n

3 three-factor interactions,
consider the following linear model.
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where Z (y1, y2, … yn) is the observed response of treatment (y1, y2, . . . , yn), yi is
the different levels of factor i and takes the value −1 or 1 ( i = 1,..n). 0 is the

grand mean, i is the major outcome of factor i,  γij is the two-factor interactions
between factors i and j, and γijk is the 3fis interaction among the factors i , j and k.
All the four-factor or higher-order interactions are omitted in model (1). Model (1)
can also be written in matrix form, i.e., Z = Y1 1 + Y2 2 +  (2)

where Z is an N × 1 vector of observations, Y1 = (1N, y1, · · · , yn), 1N denotes an
N × 1 vector of 1’s, '

1 = (γ 0 , γ 1 ,.., γn) stand for the grand mean and the n main

outcomes. 2 is the vector of  n
2 2fis two-factor interaction  parameters and

the vector of  n
3 three-factor interactions parameters, Y2 is the equivalent

coefficient matrix of 2fi’s and 3fi’s both,  is a vector of free chance errors with
mean 0 and regular variance  2. As a common, 1 can be any subset that is of

main interest with 2 in place of minor parameters. in the statement of regularity

of errors, the Fisher in rank matrix of 2 in step for 1 is Cd = Y ′2 Y2 − (Y '
1 Y2)′ (Y

′1 Y1)−1(Y ′1 Y2). Since Cd is symmetric, it denotes C '
d Cd as trace C 2

d . The (M, S)
criterion defines those designs which capitalize on trace Cd and then discovers
designs within this subclass that reduce trace C 2

d is called an (M, S)-optimal
designs reported in Shah and Sinha (1989).  For a 2n−k regular plan with one
duplicate, Y ′1 Y1 = 2n−k In+1 where In+1 is the (n + 1)- multidimensional identity
matrix. Thus, Cd = Y ′2 Y2 − 2− (n−k ) (Y ′1 Y2)′ (Y ′1 Y2).
It is noted that although the (M, S) optimality criterion explained  for the basis of
model (2) and for 2 level FFDs,  yet trace Cd and trace C 2

d are, in fact, free of the
option of orthogonal dissimilarities (Dey and Mukerjee 1999). Mixed-level and
multi-level designs accept the application of (M, S) optimnality criterion. In the
literature, it is shown that many statisticians also studied (M, S)-optimality in the
FFD’s. It is regarded as the joint order on 1 and 2 while this study is focused on

the conditional information on 2 given 1 . This criterion is very useful in this

study, particularly in the situation in which main effects are of major portion, but
the researcher would like to have a lot of details on 2fi’s and 3fi’s as likely below
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the proposition so as to 4fis and higher-order interactions are unimportant. The
trace Cd and trace C 2

d include not only the full details of 2fi’s and 3fi’s on major
outcomes but in order on 2fi’s and 3fi’s like wise.

Jacroux (2004) has elaborated the basis of resolution III or higher for regular
designs. His mathematical framework withstands the designs of resolution III and
IV, which provided basis that major outcomes can be aliased with 2fi’s. In case of
regular FFDs of a 2n−k, while design d would be Wi (d), the number of words of
length i in the defining relation. Then W (d) = W1 (d),.Wn(d) belongs to design d
of word length pattern. In case of comparison of two designs, say d1 and d2, the
design is called MA designs which have less aberration. Mathematically the
following conditions are assumed to be true: W1 (d1) ≠ W1 (d2) then W1 (d1) < W1
(d2).

In a 2n−k of d of resolution III designs or more, (2k−1) of the 2n −1 factorial
belongings show in the essential order. The left over  (2n–2k) effects are divided
into g = 2n−k − 1 alias sets each of size 2k, where n of the g alias sets include
major outcomes (one each). Let f = g-n and the f alias sets not holding major
outcomes be M1, · · , Mf . Also let the n alias sets containing major outcomes be
Mf+1, Mg. For 1 ≤ i ≤ g, let mi (d) be the number of 2fi’s in Mi. Then

)(3)(
1

3 dWdm
g

fi
i



 (3)

Equation (3) defines three 2fi’s which consist of 3W3 (d) in order that main effects
are aliased with 3 two-factor interactions.  Main effects are also aliased with three
(2fi’s) with the word length of 3. This involves that ( n

2 )−3W3(d) two-factor
interactions that are not aliased with main effects.  In the same way, let mj (d) be
the number of 3fi’s in Mj, then

)(4)(
1

4 dWdm
g

fi
j



 (4)

It is also clear from equation (4) that there are 4W4(d)  four 3fi’s which are aliased
with main effects because every factor of distance 4 word the important
comparative identifies four three-factor interactions 3fi’s which are aliased with
the main effects. In the same way, there are ( n

3 ) – 4W4(d) three-factor
interactions 3fi’s which are not aliased with main effects, then  the crosswise part
of (Y '

2 Y2)′( Y '
2 Y2) is 4n−k.  The designs elaborate that the defining relation has

been developed in such way that the main effects are confounded with two-factor
interactions 2fi’s and 0 otherwise.   Two main effects cannot be confounded with
the same 2fi’s and hence the design is said to be resolution III or higher. Entries
of the upper and lower triangle of the matrix would be zero when main effects are
confounded with two-factor interactions and the property of 4n−k will not withstand
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when the same main effects are both confounded. Similarly there are ( n
3 ) - 4W4

(d) three-factor interactions which are not aliased with major belongings, then
the diagonal element of (Y '

2 Y2) ′(Y '
2 Y2) is 4n−p if the 2fi’s are aliased with a major

effect, because the design resolution is at least III, so it means that they cannot
be 2 major effects aliased with 2fi’s. The off-diagonal element is zero if the 2fi’s
are not aliased with a main effect and 4n−k if they are both aliased with the same
main effect. Likewise, the (i, i ) th sloping part of Y '

2 Y2 is 2n−k, and the (i, j)th off-
diagonal part is zero if the i th and j th 2fi’s are not aliased with one another and
2n−k if which is therefore, trace Cd is the same to the figure of 2fi’s that are not
aliased with major belongings (i.e., 2fi’s in M1,.., Mf ) increased by 2n−p, and

Trace Cd = 2n-k
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so, this purpose fractional factorial 2 level  design d of resolution III or higher,
our proposed formulae for trace Cd and trace C 2

d for three-factor interactions
are:
Trace
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The above formulae shows that the (M, S) optimality method used on designs

that maximizes  

f

i
dmi

1
)( (two-factor interactions) (or, equivalently, minimizes

W3(d)   first and then minimizes  

f

i
dmi

1

2)( , when  the MA method  minimizes

W3(d)  in start  and then minimizes W4(d) (or, homogeneously, minimizes

))(
1

2 

g

i
dmi . Table 1 shows the 11, 382 

III designs with different generators.

Among these 11 designs, design 1, 2, 4, 9 and 10 has same maximum dC that

is 2304. Among this set of designs, design 4 and 9 has minimum 2
dC that is

235520. According to the criterion, design having minimum 2
dC in the set of

designs, having maximum dC should be considered the best design. So, design
4 and 9 are the best designs in this case.
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Table 1. 382 
III designs in 32 runs on the basis of maximum dC and  minimum 2

dC .

Design Generators max dC min
2
dC

382 
III

F= ABE, G=ABDE,  H=BCDE 2304 241664

382 
III

F= BC, G=ABCD,  H=CDE 2304 241664

382 
III

F=  ABC  , G=CD,  H=DE 2176 217088

382 
III

F=ABCE, G=CD,  H=CDE 2304 235520

382 
III

F=BCE, G=AE,  H=CDE 2176 217088

382 
III

F=DE, G=CDE,  H=BDE 1920 196608

382 
III

F=AE, G=CDE,  H=CD 2048 227328

382 
III

F=AB, G=AE,  H=AD 1920 184320

382 
III

F=DE, G=ABCDE,  H=AE 2304 235520

382 
III

F=CD, G=BCE,  H=AD 2304 241664

382 
III

F=ACE, G=ABCE,  H=CDE 2176 217088

Table 2. 282 
iv designs in 64 runs on the basis of maximum dC and  minimum 2

dC .

Design Generators max dC min
2
dC

282 
iv

G=BCD,  H=ABEF 5120 532480

282 
iv

G=DEF,  H=ABEF 5120 614400

282 
iv

G = ABC,  H = CDE 4864 630784

282 
iv

G = ABCDE,  H = ACDEF 5120 614400

282 
iv

G = ABCDEF,  H =CDEF 5120 614400

282 
iv

G = BDE,  H = ADEF 5120 614400

282 
iv

G = ABDE,  H = CDE 5120 614400

282 
iv

G = ADE,  H = CDEF 5120 614400

282 
iv

G = ADEF,  H = CEF 5120 614400

282 
iv

G = AEF,  H = ADEF 5120 614400

282 
iv

G = ACEF,  H = CDF 5120 614400
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Table 2 also shows 11, 282 
iv designs of resolution IV in 64 runs with different

generators. Among these 11 designs, all designs have same maximum dC that
is 5120 except design 3 which has 4864. Among this set of designs, design 1 has
minimum 2

dC that is 532480. Since design 1 has maximum dC as well as

minimum 2
dC , so, design 1 is the best design among these designs.

Table 3. Best designs in8 runs on the basis of maximum dC and  minimum
2
dC .

Design Generators max dC min
2
dC

24-1 D=ABC 48 768
25-2 D=ABC, E=BC 64 2048
26-3 D=ABC, E=,BC, F=AC 80 4864
27-4 D=ABC, E=BC, F=BC, G=AC 80 10496

Table 4. Best designs in 16 runs on the basis of maximum dC and minimum
2
dC .

Design Generators max dC min
2
dC

25-1 E=ABCD 320 10240
26-2 E=ABCD, F=BD 432 20736
27-3 E=ABCD, F=BCD, G=ABC 576 41984
28-4 E=BCD, F=ACD, G=BCD, H=AC 784 85248
29-5 E=ABCD, F=ACD, G=BCD, H=AD, J=BD 960 153600
210-6 E=ABCD, F=AC, G=BCD, H=ACD, J=BC, K=ABD 1040 216320
211-7 E=ABD, F=ACD, G=ABCD, H=AB, J=BC, K=AD, L=BCD 1088 295936
212-8 E=BC, F=BD, G=AD, H=AD, J=AC, K=CD, L=AB, M=ABCD 1136 494848
213-9 E=ABC, F=ABD, G=CD, H=BD, J=CD, K=AB, L=AC, M=AD, N=BC 1088 667648
214-10 E=ABCD, F=ABC, G=ABD, H=ACD, J=BCD, K=AB, L=AC, M=AD,

N=BC, O=BD
560 313600

215-11 E=ABCD, F=ABC, G=ABD, H=ACD, J=BCD, K=AB, L=AC, M=AD,
N=BC, O=BD, P=CD

0 0

Table 5. Best designs in 32 runs on the basis of maximum dC and  minimum 2Cd .

Design Generators max dC min
2
dC

26-1 F=ABCDE 1120 56320
27-2 F=ABCD, G=BCD 1664 118784
28-3 F=ABDE, G=ACDE, H=ABCD 2304 235520
29-4 F=ABCDE,G=AC,H=AB 3200 471040
210-5 F=BCDE, G=ADE, H=BCE, J=ACDE 4128 820224
211-6 F=ABC, G=ACDE, H=BCDE, J=CDE, K=ABCD 5120 1325056
212-7 F=BDE,G=CD, H= BC, J=ABDE, K=ABC, L=ADE 6336 2119680
213-8 F=BDE, G=ABCD, H= BCD, J=ACD, K=BC, L=ABDE, M=AE 7552 3178496
214-9 F=ABCD, G=ACD, H=BCE, J=CDE, K=AC, L=BCDE, M=ABCDE,

N=ACE
8800 4566016

215-10 F=BCDE, G=ABDE, H=ACE, J=BCE, K=ACD, L=AC, M=BC, N=
CDE, O= CE

10112 6397952

216-11 F=BCDE, G=ABD, H=ACE, J=BCE, K=ACD, L=AC, M=BC,
N=CDE, O=CE, P=ABCDE

11328 8579072

217-12 F=BCDE, G=ABD, H=ACE, J=BCE, K=ACD, L=BDE,M=BC,
N=CDE, O=CE, P=ADE, Q=BCD, R=AC

12416 1105510
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Table 6. Best designs in 64 runs on the basis of maximum dC and  minimum 2
dC .

Design Generators max dC min
2
dC

27-1 G=BCDEF,  H=ABCDE,
G=ACDEF, H=ABDE

3584 229376

28-2 G=ACDEF, H=ABCE
G=BCDEF, H=ABCD

5376 589824

29-3 G=CDEF, H=ABCDE, J=ABCD
G= ABEF, H=ACDE, J=ABCD

7424 1114112

210-4 G=ABCDF, H=ACDE, J=BCEF, K=BCDE
G= ABCDF, H=ACDE, J=ABEF, K=ABCDE

9297 1937408

211-5 G=ABDEF, H=ACEF, J=CDE, K=ACDF, L=BCDEF
G= ABCDE, H=ACEF, J=ABCE, K=ADEF, L=BCDE

12800 3268608

213-7 G=AEF, H=CDE, J=ABCD, K=BCE, L=CDEF, M= ABCF 16256 5300224
213-7 G=ABCDF, H=ACEF,  J=BCEF, K=ACDE, L=ACD, M=BCE,

N=CDEF
20224 8470528

214-8 G=ABCEF, H=BCDEF, J=ACEF, K=AEF, L=ABCDE, M=BCDE,
N=ADEF, O=CDEF

24512 12472320

215-9 G=ABCD,H=ABDE, J=ACEF, K=BCE, L=ABCDE, M=ACDF,
N=BCEF, O=CDEF, P=CDE

29440 18333696

216-10 G=ABCDEF, H=ACDE, J=ABCD, K=ABC, L=BDEF, M= BCDE,
N=BCD, O=CDF, P=CDE, Q=DEF

34368 25473024

217-11 G=BCDEF, H=ABCDE, J=ABDE, K=ABC, L=BCDF, M=BCDE,
N=BCD, O=ACDF, P=ADEF, Q=CDEF, R=CDF

40704 36306944

Table 7. Best designs in 128 runs on the basis of maximum dC and minimum 2
dC .

Design Generators max dC min
2
dC

28-1 H=CDEFG 10752 1376256
29-2 H=ACDEFG, J=ABCDF 15360 2621440
210-3 H=ABEFG, J=ABCF, K=ABCDE

H=ABCFG, J=ABEF, K=ABCDE
H=ABCG,   J=ABEF,  K=ABCDE

21120 4669440

211-4 H=CDEFG, J=ADEF, K=ABCDE, L=ABCD 27648 7602176
212-5 H=AEFG, J=ABEF, K=ABCDE, L=ABCD, M= ABCFG 35584 12222464
213-6 H=CDEFG, J=ABDEFG, K=ABDF, L=ABDE, M=BCDG,

N=DEFG
44032 18776064

214-7 H=ABDEFG, J=ACEF, K=ABCDE, L=ABCDF, M=CDEFG,
N=BCDEF, O=DEFG

55168 28852224

215-8 H=ABEFG, J=ABCF, K=ABCDE, L=ABC, M=BCDEFG,
N=BCDEF, O=BCDE, P=BCDFG

65536 42172416

216-9 H=ACDEFH, J=ABFG, K=ABCDEF, L=ACDE, M=ABCD,
N=CEFGH, O=DFGH, P=EFGH, Q=BCDG

76800 60620800

217-10 H=ABCFG, J=ABCD, K=ABCDE, L=ABCG, M=BCDEFG,
N=BCDEF, O=BCDEG, P=BCDG, Q=CDEF, R=CEF

94208 84279296
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Table 8. Best designs in 256 runs on the basis of maximum dC and minimum
2
dC .

Design Generators max dC min
2
dC

29-1 J=ABCDEFGH ,
J=ABCDEFG,
J=ABCDEH

30720 7864320

210-2 J=ABCFGH, K=ABCDE
J=ABCDH, K=ABEFGH
J=CDFGH, K=ABEFGH

21120 4669440

211-3 J=ABCDGH,K=ABFG,L=ABCDF 56320 20971520
212-4 J=BCDEGH, K=ACDFG, L=ABCEF, M=ACDE 73216 29229056
213-5 J=ABFGH, K=ABCDG, L=CDEF, M=ABDE, N=ABCD

J=AEFGH, K=CDEFG, L=ABCDEF, M=ADE, N=ABCD
91136 49414144

214-6 J=ABCFGH,K=BCDEFG,L=ABCDEF,=ABCDEH,N=ABCDG, O=CDEGH 113408 69140480
215-7 J=AFGH,K=AFG,L=ABCF,M=ABCDE,N=ABCD,O=CDEH,P=DEFGH 139264 98816529
216-8 J=ABCH,K=ABFG,L=ABCEF,M=CDE,N=ABCD,O=CFGH, P=DEGH,Q=DEFG 166912 149282476
217-9 J=ACDEFH, K=ABFG ,L=ABCDEF, M=ACDE ,N=ABCD, O=CEFGH, P=DFGH,

Q=EFGH, R=BCDG
199680 188874752

Table 9. Best designs in 512 runs on the basis of maximum dC and minimum
2
dC .

Design Generators max dC min
2
dC

210 --1 K=ABCFGH 84480 43253760
211 --2 K=ABFGHJ,L=ABCDEF 112640 57671680
212 --3 K=ADEFGHJ,L=DEFGH,M=ABCDEF

K=AEFGHJ,L=ABCGH,M=ABCDEFG
146432 85458944

213 --4 K=AEFGHJ, L=DEFGH, M=ABCDE, N=ABCDEFHJ 186368 126877696
214 --5 K=ABEFGHJ, L=AFGH M=ABDG, N=ABEF, O=ABCDE 232960 182190080
215-6 K=ABCDFGHJ, L=BCDEFGH, M=ADEFG,N=ABCDEF, O=ABCDE,

P=ABCD
280576 265289728

216-7 K= ABCEFHJ,L=ABFGH, M=ACEFG ,N= BCEF O=ABCDE, P=ABDHJ,
Q=DEGHJ

348160 363331584

217-8 K= ABCDHJ, L=AEFGH, M=ABCDEFG, N=ADEF ,O=ABCDE, P=BEFGH,
Q=BDEFG, R=BCDEGH

409600 505413632

Table 10. Best designs in 1024 runs on the basis of maximum dC and minimum
2
dC .

Design Generators max dC min
2
dC

211 --1 L=ABCDEFHJK
L=ABDFGHJK

225280 230686720

212 --2 L=BCDEHJK, M=ABDEFGHJ
L=ABCDEK, M=ABCDEFGHJ

292864 299892736

213 --3 L=ABFGHJK, M=ABCDEHJ, N=ABCDEFGH
L= ABCDGHJK, M=ABEFGHJ, N=CDEFGH

372736 402653184

214 --4 L=ABCHJK, M=ABCDGHJ, N=ABEFGH,  O= ABCDL=ABCDEFK,
M=DEFGHJ, N=ABCFGH O=BCDEFG

465920 560988160

215 --5 L=ABCDGHJK, M=CDEFGHJ, N=ABEFGH, O=ABCFG, P=CDEF 573440 734003200
216-6 L=ACDEFGHJK, M=ABDEFGHJ, N=ABCFH, O=ABCG, P=ABCDE,

Q=AGHJK
L=AEFGHJK, M=ABDFGHJ, N=ABCGHJK, O=ABCEG, P=ABDEFG,
Q=AGJK

696320 692060160

217-7 L=AFGJK, M=ABEGHJ, N=ACDEFGH, O=ABCFG, P=ABCDEF,
Q=ABCDE, R=ABCD
L=AFGHJK, M=ABEFGHJ, N=ABCDEFGH, O=ABCFG, P=ABCDEFK,
Q=ABCDE, R=ABCDGHJ
L=ACDFGHJK, M=ABEFJ, N=ABFGH, O=ABCFG, P=ABCDEF,
Q=ABCDEJK, R=ABCDGHJ

827392 987758592
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Table 11. Simulated best designs in two-factor interactions on the basis of maximum dC

and minimum 2
dC .

Design Generators
max

dC
min

2
dC

25-1 E=ABCD 320 10240
26-1 F=ABCDE 1120 56320
27-1 G=ABCDEF 3584 229376
27-2 F=ABCD, G=BCD 1664 118784
28-2 G=CDEF, H=ABCDE 5376 589824
29-2 H=ACDEFG, J=ABCDF 15360 2621440
29-3 G=CDEF,H=ABCDE,J=ABCD 7424 1114112
28-1 H=CDEFG 10752 1376256
210-1 K=ABCFGH 84480 43253760
211-3 J=ABCDGH, K=ABFG, L=ABCDF 56320 20971520
211-2 K=ABFGHJ, L=ABCDEF 112640 57671680
212-3 K=ADEFGHJ, L=DEFGH, M=ABCDEF 146432 85458944
212-2 L=BCDEHJK, M=ABDEFGHJ

L=ABCDEK, M=ABCDEFGHJ
292864 299892736

213-4 K=AEFGHJ, L=DEFGH, M=ABCDE, N=ABCDEFHJ, 186368 126877696
214-5 K=ABEFGHJ, L=AFGH M=ABDG, N=ABEF, O=ABCDE 232960 182190080
214-4 K=ABCHJK, L=ABCDGHJ, M=ABEFGH N= ABCD

K=ABCDEFK, L=DEFGHJ, M=ABCFGH N=BCDEFG
465920 560988160

215-5 L=ABCDGHJK, M=CDEFGHJ, N=ABEFGH, O=ABCFG, Q=CDEF 573440 692060160
216-6 L=ACDEFGHJK, M=ABDEFGHJ, N=ABCFH, O=ABCG, P=ABCDE,

Q=AGHJK
L=AEFGHJK, M=ABDFGHJ, N=ABCGHJK, O=ABCEG,
P=ABDEFG, Q=AGJK

696320 987758592

217-7 L=AFGJK, M=ABEGHJ, N=ACDEFGH, O=ABCFG, P=ABCDEF,
Q=ABCDE, R=ABCD
L=AFGHJK, M=ABEFGHJ, N=ABCDEFGH, O=ABCFG,
P=ABCDEFK, Q=ABCDE,R=ABCDGHJ
L=ACDFGHJK, M=ABEFJ, N=ABFGH, O=ABCFG, P=ABCDEF,
Q=ABCDEJK, R=ABCDGHJ

827392 1505755136

RESULTS AND DISCUSSION

The (M, S)-optimality criterion is used for regular FFD’s. The proposed formulae
for three-factor interactions were used for simulations study and found the best
designs on the basis of trace Cd and trace C 2

d in different runs from 8, 16, 32, 64,
128, 256, 512, and 1024 up to 17 factors by using different generators. Tables
3,4,..,10 show that these designs are selected as the best designs on the basis
of  maximum trace Cd and minimum trace C 2

d .  The generators, which are used,
have best alias structures. The Table 11 shows the designs which have defining
relations which can be applied on all main effects, all two-factor interactions and
some three-factor interactions. These designs  consist of  25-1,26-1, 27-1 , 27-2 ,28-2,
29-2, 29-3 ,28-1 , 210-1 , 211-3 , 211-2 , 212-3 , 212-2 , 213-4 , 214-5 , 214-4, 215-5, 216-6, 217-7 and
different generators have been used, but the  selected generators have
maximum trace Cd and minimum trace C 2

d within the chosen class. The table 12
reveals that the  designs consist of  25-1, 26-1, 27-1, 27-2, 28-2, 29-2, 29-3, 210-3, 210-2 ,
211-4, 212-4, 213-6, 213-5, 214-7, 214-6, and their generators are applied for all main
effects, all two-factor interactions and all three-factor interactions. Tables 11 and
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12 have the maximum trace Cd and minimum trace C 2
d and all effects can be

tested for the trace Cd and trace C 2
d .

(M, S)-optimality criterion is also important to apply on many designs where
higher order interactions are also of interest. The (M, S)-optimality criterion is
simpler in computation, but it is also self-sufficient of the selection of orthonormal
contrasts while the main effects, 2fi’s and 3fi’s, are focused in this study.  Regular
FFD’s and two components of the (M, S) criterion, i.e., trace Cd and trace C 2

d ,
are derived as exclusively functions of the numbers of three-letter and four-letter
words. Usually, the designs under this criterion are not MA designs, but all MA
designs up to 64 runs are (M, S)-optimal (Qu et al., 2008).

Table 12. Simulated best designs in three-factor interactions on the basis of maximum

dC and minimum
2
dC .

Design Generators max dC min
2
dC

25-1 E=ABCD 320 10240
26-1 F=ABCDE 1120 56320
27-1 G=ABCDEF 3584 229376
27-2 F=ABCD,G=BCD 1664 118784
28-2 G=CDEF, H=ABCDE 5376 589824
29-2 H=ACDEFG, J=ABCDF 15360 2621440
29-3 G=CDEF, H=ABCDE, J=ABCD 7424 1114112
210-3 H=ABEFG, J=ABCF, K=ABCDE

H=ABCFG, J=ABEF, K=ABCDE
H=ABCG, J=ABEF, K=ABCDE

21120 4669440

210-2 J=ABCFGH, K=ABCDE
J=ABCDH, K=ABEFGH
J=CDFGH, K=ABEFGH

42240 12124160

211-4 H=CDEFG, J=ADEF, K=ABCDE, L=ABCD 27648 7602176
212-4 J=BCDEGH, K=ACDFG, L=ABCEF, M=ACDE 73216 29229056
213-6 H=CDEFG, J=ABDEFG, K=ABDF,

L=ABDE,M=BCDG, N=DEFG
44032 18776064

213-5 J=ABFGH, K=ABCDG, L=CDEF, M=ABDE, N=ABCD 91136 49414144
214-7 J=AEFGH, K=CDEFG, L=ABCDEF, M=ADE,

N=ABCD
55168 28852224

214-6 H=ABDEFG, J=ACEF, K=ABCDE, L=ABCDF,
M=CDEFG, N=BCDEF, O=DEFG
J=ABCFGH, K=BCDEFG, L=ABCDEF,
M=ABCDEH,N=ABCDG, O=CDEGH

113408 69140480

CONCLUSION

Tables 3, 4…10 show some selected designs among the many designs
simulated by R- package with different generators. The simulated designs consist
of generators which have the best alias structures. The selected designs are the
best designs on the basis maximum trace Cd and minimum trace C 2

d which is
obtained for using generators and their defining relations. It is shown from the
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table 10 in design 7, 217-7 seven generators are L=AFGJK, M=ABEGHJ,
N=ACDEFGH, O=ABCFG, P=ABCDEF, Q=ABCDE, R=ABCD and
L=ACDFGHJK, M=ABEFJ, N=ABFGH, O=ABCFG, P=ABCDEF, Q=ABCDEJK,
R=ABCDGHJ and have same trace Cd which is 831488 but different trace C 2

d

1505755136 and 1317011456 respectively. According the (M, S)-optimality
criterion if both design have same trace Cd then we will select the design having
minimum trace C 2

d from that class of designs. So in this scenario the design 2 is

better than design 1 on the basis of minimum trace C 2
d which is 1317011456.

Mostly, lower order generators have less trace Cd and maximum trace C 2
d .

Tables 11 and 12 show that the designs have higher runs, but one can use them
for large size experiments if it can afford it. We can use up to 17 factors designs
and up to 1/11 fractions. It is also found that some designs have two or three
different type of generators which have same trace Cd, but different trace C 2

d .
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